Methods summary
public
Liberty\BigInteger
|
#
__construct( optional $x = 0, optional $base = 10 )
Converts base-2, base-10, base-16, and binary strings (base-256) to BigIntegers.
Converts base-2, base-10, base-16, and binary strings (base-256) to BigIntegers.
If the second parameter - $base - is negative, then it will be assumed that the number's are encoded using
two's compliment. The sole exception to this is -10, which is treated the same as 10 is.
Here's an example:
<?php
include('Math/BigInteger.php');
$a = new BigInteger('0x32', 16);
echo $a->toString();
?>
Parameters
- $x
- base-10 number or base-$base number if $base set.
- $base
- $base
Returns
|
public
|
#
BigInteger( integer $x = 0, integer $base = 10 )
This function exists to maintain backwards compatibility with older code
This function exists to maintain backwards compatibility with older code
Parameters
- $x
- base-10 number or base-$base number if $base set.
- $base
- Number base
|
public
String
|
#
toBytes( Boolean $twos_compliment = false )
Converts a BigInteger to a byte string (eg. base-256).
Converts a BigInteger to a byte string (eg. base-256).
Negative numbers are saved as positive numbers, unless $twos_compliment is set to true, at which point, they're
saved as two's compliment.
Here's an example:
<?php
include('Math/BigInteger.php');
$a = new BigInteger('65');
echo $a->toBytes();
?>
Parameters
Returns
String
|
public
String
|
#
toHex( Boolean $twos_compliment = false )
Converts a BigInteger to a hex string (eg. base-16)).
Converts a BigInteger to a hex string (eg. base-16)).
Negative numbers are saved as positive numbers, unless $twos_compliment is set to true, at which point, they're
saved as two's compliment.
Here's an example:
<?php
include('Math/BigInteger.php');
$a = new BigInteger('65');
echo $a->toHex();
?>
Parameters
Returns
String
|
public
String
|
#
toBits( Boolean $twos_compliment = false )
Converts a BigInteger to a bit string (eg. base-2).
Converts a BigInteger to a bit string (eg. base-2).
Negative numbers are saved as positive numbers, unless $twos_compliment is set to true, at which point, they're
saved as two's compliment.
Here's an example:
<?php
include('Math/BigInteger.php');
$a = new BigInteger('65');
echo $a->toBits();
?>
Parameters
Returns
String
|
public
String
|
#
toString( )
Converts a BigInteger to a base-10 number.
Converts a BigInteger to a base-10 number.
Here's an example:
<?php
include('Math/BigInteger.php');
$a = new BigInteger('50');
echo $a->toString();
?>
Returns
String
|
public
Liberty\BigInteger
|
#
copy( )
Copy an object
PHP5 passes objects by reference while PHP4 passes by value. As such, we need a function to guarantee
that all objects are passed by value, when appropriate. More information can be found here:
http://php.net/language.oop5.basic#51624
Returns
See
|
public
|
#
__toString( )
__toString() magic method
__toString() magic method
Will be called, automatically, if you're supporting just PHP5. If you're supporting PHP4, you'll need to call
toString().
|
public
Liberty\BigInteger
|
#
__clone( )
__clone() magic method
Although you can call BigInteger::__toString() directly in PHP5, you cannot call BigInteger::__clone()
directly in PHP5. You can in PHP4 since it's not a magic method, but in PHP5, you have to call it by using the PHP5
only syntax of $y = clone $x. As such, if you're trying to write an application that works on both PHP4 and PHP5,
call BigInteger::copy(), instead.
Returns
See
|
public
|
#
__sleep( )
__sleep() magic method
Will be called, automatically, when serialize() is called on a BigInteger object.
See
|
public
|
#
__wakeup( )
__wakeup() magic method
Will be called, automatically, when unserialize() is called on a BigInteger object.
See
|
public
Liberty\BigInteger
|
#
add( Liberty\BigInteger $y )
Adds two BigIntegers.
Here's an example:
<?php
include('Math/BigInteger.php');
$a = new BigInteger('10');
$b = new BigInteger('20');
$c = $a->add($b);
echo $c->toString();
?>
Parameters
Returns
|
public
Array
|
#
_add( Array $x_value, Boolean $x_negative, Array $y_value, Boolean $y_negative )
Performs addition.
Parameters
- $x_value
- $x_negative
- $y_value
- $y_negative
Returns
Array
|
public
Liberty\BigInteger
|
#
subtract( Liberty\BigInteger $y )
Subtracts two BigIntegers.
Subtracts two BigIntegers.
Here's an example:
<?php
include('Math/BigInteger.php');
$a = new BigInteger('10');
$b = new BigInteger('20');
$c = $a->subtract($b);
echo $c->toString();
?>
Parameters
Returns
|
public
Array
|
#
_subtract( Array $x_value, Boolean $x_negative, Array $y_value, Boolean $y_negative )
Performs subtraction.
Parameters
- $x_value
- $x_negative
- $y_value
- $y_negative
Returns
Array
|
public
Liberty\BigInteger
|
#
multiply( Liberty\BigInteger $x )
Multiplies two BigIntegers
Multiplies two BigIntegers
Here's an example:
<?php
include('Math/BigInteger.php');
$a = new BigInteger('10');
$b = new BigInteger('20');
$c = $a->multiply($b);
echo $c->toString();
?>
Parameters
Returns
|
public
Array
|
#
_multiply( Array $x_value, Boolean $x_negative, Array $y_value, Boolean $y_negative )
Performs multiplication.
Parameters
- $x_value
- $x_negative
- $y_value
- $y_negative
Returns
Array
|
public
Array
|
#
_regularMultiply( Array $x_value, Array $y_value )
Performs long multiplication on two BigIntegers
Performs long multiplication on two BigIntegers
Modeled after 'multiply' in MutableBigInteger.java.
Parameters
Returns
Array
|
public
Array
|
#
_karatsuba( Array $x_value, Array $y_value )
Performs Karatsuba multiplication on two BigIntegers
|
public
Array
|
#
_square( Array $x = false )
Performs squaring
Parameters
Returns
Array
|
public
Array
|
#
_baseSquare( Array $value )
Performs traditional squaring on two BigIntegers
Performs traditional squaring on two BigIntegers
Squaring can be done faster than multiplying a number by itself can be. See
HAC 14.2.4 /
MPM 5.3 for more information.
Parameters
Returns
Array
|
public
Array
|
|
public
Array
|
#
divide( Liberty\BigInteger $y )
Divides two BigIntegers.
Returns an array whose first element contains the quotient and whose second element contains the
"common residue". If the remainder would be positive, the "common residue" and the remainder are the
same. If the remainder would be negative, the "common residue" is equal to the sum of the remainder
and the divisor (basically, the "common residue" is the first positive modulo).
Here's an example:
<?php
include('Math/BigInteger.php');
$a = new BigInteger('10');
$b = new BigInteger('20');
list($quotient, $remainder) = $a->divide($b);
echo $quotient->toString();
echo "\r\n";
echo $remainder->toString();
?>
Parameters
Returns
Array
|
public
Array
|
#
_divide_digit( Array $dividend, Array $divisor )
Divides a BigInteger by a regular integer
Divides a BigInteger by a regular integer
abc / x = a00 / x + b0 / x + c / x
Parameters
Returns
Array
|
public
Liberty\BigInteger
|
#
legendre( Liberty\BigInteger $p )
Performs Legendre Symbol.
Performs Legendre Symbol.
Here's an example:
<?php
include('Math/BigInteger.php');
$a = new BigInteger('2');
$b = new BigInteger('3');
$c = $a->legendre($b);
echo $c->toString();
?>
Parameters
- $p
- $m The odd and positive BigNumber number.
Returns
|
public
Liberty\BigInteger
|
#
mod( Liberty\BigInteger $m )
Performs modulo.
Here's an example:
<?php
include('Math/BigInteger.php');
$a = new BigInteger('8');
$b = new BigInteger('3');
$c = $a->mod($b);
echo $c->toString();
?>
Parameters
- $m
- The modulo that is being evaluated.
Returns
|
public
Liberty\BigInteger
|
#
modPow( Liberty\BigInteger $e, Liberty\BigInteger $n )
Performs modular exponentiation.
Performs modular exponentiation.
Here's an example:
<?php
include('Math/BigInteger.php');
$a = new BigInteger('10');
$b = new BigInteger('20');
$c = new BigInteger('30');
$c = $a->modPow($b, $c);
echo $c->toString();
?>
Parameters
Returns
|
public
Liberty\BigInteger
|
|
public
Liberty\BigInteger
|
#
_slidingWindow( Liberty\BigInteger $e, Liberty\BigInteger $n, Integer $mode )
Sliding Window k-ary Modular Exponentiation
Sliding Window k-ary Modular Exponentiation
Based on HAC 14.85 /
MPM 7.7. In a departure from those algorithims,
however, this function performs a modular reduction after every multiplication and squaring operation.
As such, this function has the same preconditions that the reductions being used do.
Parameters
Returns
|
public
Array
|
#
_reduce( Array $x, Array $n, Integer $mode )
Modular reduction
For most $modes this will return the remainder.
Parameters
Returns
Array
See
|
public
Array
|
#
_prepareReduce( Array $x, Array $n, Integer $mode )
Modular reduction preperation
Modular reduction preperation
Parameters
Returns
Array
See
|
public
Array
|
#
_multiplyReduce( Array $x, Array $y, Array $n, Integer $mode )
Modular multiply
Parameters
Returns
Array
See
|
public
Array
|
#
_squareReduce( Array $x, Array $n, Integer $mode )
Modular square
Parameters
Returns
Array
See
|
public
Liberty\BigInteger
|
#
_mod2( Liberty\BigInteger $n )
Modulos for Powers of Two
Modulos for Powers of Two
Calculates $x%$n, where $n = 2**$e, for some $e. Since this is basically the same as doing $x & ($n-1),
we'll just use this function as a wrapper for doing that.
Parameters
Returns
See
|
public
Array
|
#
_barrett( Array $n, Array $m )
Barrett Modular Reduction
Barrett Modular Reduction
See HAC 14.3.3 /
MPM 6.2.5 for more information. Modified slightly,
so as not to require negative numbers (initially, this script didn't support negative numbers).
Employs "folding", as described at
thesis-149.pdf#page=66. To quote from
it, "the idea [behind folding] is to find a value x' such that x (mod m) = x' (mod m), with x' being smaller than x."
Unfortunately, the "Barrett Reduction with Folding" algorithm described in thesis-149.pdf is not, as written, all that
usable on account of (1) its not using reasonable radix points as discussed in
MPM 6.2.2 and (2) the fact that, even with reasonable
radix points, it only works when there are an even number of digits in the denominator. The reason for (2) is that
(x >> 1) + (x >> 1) != x / 2 + x / 2. If x is even, they're the same, but if x is odd, they're not. See the in-line
comments for details.
Parameters
Returns
Array
See
|
public
Array
|
#
_regularBarrett( Array $x, Array $n )
(Regular) Barrett Modular Reduction
(Regular) Barrett Modular Reduction
For numbers with more than four digits BigInteger::_barrett() is faster. The difference between that and this
is that this function does not fold the denominator into a smaller form.
Parameters
Returns
Array
See
|
public
Array
|
#
_multiplyLower( Array $x_value, Boolean $x_negative, Array $y_value, Boolean $y_negative, Integer $stop )
Performs long multiplication up to $stop digits
Performs long multiplication up to $stop digits
If you're going to be doing array_slice($product->value, 0, $stop), some cycles can be saved.
Parameters
- $x_value
- $x_negative
- $y_value
- $y_negative
- $stop
Returns
Array
See
|
public
Array
|
#
_montgomery( Array $x, Array $n )
Montgomery Modular Reduction
Montgomery Modular Reduction
($x->_prepMontgomery($n))->_montgomery($n) yields $x % $n.
MPM 6.3 provides insights on how this can be
improved upon (basically, by using the comba method). gcd($n, 2) must be equal to one for this function
to work correctly.
Parameters
Returns
Array
See
|
public
Array
|
#
_montgomeryMultiply( Array $x, Array $y, Array $m )
Montgomery Multiply
Interleaves the montgomery reduction and long multiplication algorithms together as described in
HAC 14.36
Parameters
Returns
Array
See
|
public
Array
|
#
_prepMontgomery( Array $x, Array $n )
Prepare a number for use in Montgomery Modular Reductions
Prepare a number for use in Montgomery Modular Reductions
Parameters
Returns
Array
See
|
public
Integer
|
#
_modInverse67108864( Array $x )
Modular Inverse of a number mod 2**26 (eg. 67108864)
Modular Inverse of a number mod 2**26 (eg. 67108864)
Based off of the bnpInvDigit function implemented and justified in the following URL:
http://www-cs-students.stanford.edu/~tjw/jsbn/jsbn.js
The following URL provides more info:
http://groups.google.com/group/sci.crypt/msg/7a137205c1be7d85
As for why we do all the bitmasking... strange things can happen when converting from floats to ints. For
instance, on some computers, var_dump((int) -4294967297) yields int(-1) and on others, it yields
int(-2147483648). To avoid problems stemming from this, we use bitmasks to guarantee that ints aren't
auto-converted to floats. The outermost bitmask is present because without it, there's no guarantee that
the "residue" returned would be the so-called "common residue". We use fmod, in the last step, because the
maximum possible $x is 26 bits and the maximum $result is 16 bits. Thus, we have to be able to handle up to
40 bits, which only 64-bit floating points will support.
Thanks to Pedro Gimeno Fortea for input!
Parameters
Returns
Integer
See
|
public
mixed
|
#
modInverse( Liberty\BigInteger $n )
Calculates modular inverses.
Calculates modular inverses.
Say you have (30 mod 17 * x mod 17) mod 17 == 1. x can be found using modular inverses.
Here's an example:
<?php
include('Math/BigInteger.php');
$a = new BigInteger(30);
$b = new BigInteger(17);
$c = $a->modInverse($b);
echo $c->toString();
echo "\r\n";
$d = $a->multiply($c);
list(, $d) = $d->divide($b);
echo $d;
?>
Parameters
Returns
mixed false, if no modular inverse exists, BigInteger, otherwise.
|
public
Liberty\BigInteger
|
#
extendedGCD( Liberty\BigInteger $n )
Calculates the greatest common divisor and Bezout's identity.
Calculates the greatest common divisor and Bezout's identity.
Say you have 693 and 609. The GCD is 21. Bezout's identity states that there exist integers x and y such that
693x + 609y == 21. In point of fact, there are actually an infinite number of x and y combinations and which
combination is returned is dependant upon which mode is in use. See
Bezout's identity - Wikipedia for more information.
Here's an example:
<?php
include('Math/BigInteger.php');
$a = new BigInteger(693);
$b = new BigInteger(609);
extract($a->extendedGCD($b));
echo $gcd->toString() . "\r\n";
echo $a->toString() * $x->toString() + $b->toString() * $y->toString();
?>
Parameters
Returns
|
public
Liberty\BigInteger
|
#
gcd( Liberty\BigInteger $n )
Calculates the greatest common divisor
Calculates the greatest common divisor
Say you have 693 and 609. The GCD is 21.
Here's an example:
<?php
include('Math/BigInteger.php');
$a = new BigInteger(693);
$b = new BigInteger(609);
$gcd = a->extendedGCD($b);
echo $gcd->toString() . "\r\n";
?>
Parameters
Returns
|
public
Liberty\BigInteger
|
|
public
Integer
|
#
compare( Liberty\BigInteger $y )
Compares two numbers.
Although one might think !$x->compare($y) means $x != $y, it, in fact, means the opposite. The reason for this is
demonstrated thusly:
$x > $y: $x->compare($y) > 0
$x < $y: $x->compare($y) < 0
$x == $y: $x->compare($y) == 0
Note how the same comparison operator is used. If you want to test for equality, use $x->equals($y).
Parameters
Returns
Integer < 0 if $this is less than $y; > 0 if $this is greater than $y, and 0 if they are equal.
See
|
public
Integer
|
#
_compare( Array $x_value, Boolean $x_negative, Array $y_value, Boolean $y_negative )
Compares two numbers.
Parameters
- $x_value
- $x_negative
- $y_value
- $y_negative
Returns
Integer
See
|
public
Boolean
|
#
equals( Liberty\BigInteger $x )
Tests the equality of two numbers.
Tests the equality of two numbers.
If you need to see if one number is greater than or less than another number, use BigInteger::compare()
Parameters
Returns
Boolean
See
|
public
|
#
setPrecision( Integer $bits )
Set Precision
Some bitwise operations give different results depending on the precision being used. Examples include left
shift, not, and rotates.
Parameters
|
public
Liberty\BigInteger
|
|
public
Liberty\BigInteger
|
|
public
Liberty\BigInteger
|
|
public
Liberty\BigInteger
|
|
public
Liberty\BigInteger
|
#
bitwise_rightShift( Integer $shift )
Logical Right Shift
Shifts BigInteger's by $shift bits, effectively dividing by 2**$shift.
Parameters
Returns
|
public
Liberty\BigInteger
|
#
bitwise_leftShift( Integer $shift )
Logical Left Shift
Shifts BigInteger's by $shift bits, effectively multiplying by 2**$shift.
Parameters
Returns
|
public
Liberty\BigInteger
|
#
bitwise_leftRotate( Integer $shift )
Logical Left Rotate
Instead of the top x bits being dropped they're appended to the shifted bit string.
Parameters
Returns
|
public
Liberty\BigInteger
|
#
bitwise_rightRotate( Integer $shift )
Logical Right Rotate
Instead of the bottom x bits being dropped they're prepended to the shifted bit string.
Parameters
Returns
|
public
|
#
setRandomGenerator( String $generator )
Set random number generator function
Set random number generator function
This function is deprecated.
Parameters
|
public
Liberty\BigInteger
|
#
_random_number_helper( Integer $size )
Generates a random BigInteger
Generates a random BigInteger
Byte length is equal to $length. Uses crypt_random if it's loaded and mt_rand if it's not.
Parameters
Returns
|
public
Liberty\BigInteger
|
#
random( optional $min = false, optional $max = false )
Generate a random number
Parameters
Returns
|
public
Liberty\BigInteger
|
#
randomPrime( optional $min = false, optional $max = false, optional $timeout = false )
Generate a random prime number.
Generate a random prime number.
If there's not a prime within the given range, false will be returned. If more than $timeout seconds have elapsed,
give up and return false.
Parameters
- $min
- $min
- $max
- $max
- $timeout
- $timeout
Returns
|
public
|
#
_make_odd( )
Make the current number odd
Make the current number odd
If the current number is odd it'll be unchanged. If it's even, one will be added to it.
See
|
public
Boolean
|
#
isPrime( optional $t = false )
Checks a numer to see if it's prime
Checks a numer to see if it's prime
Assuming the $t parameter is not set, this function has an error rate of 2**-80. The main motivation for the
$t parameter is distributability. BigInteger::randomPrime() can be distributed accross multiple pageloads
on a website instead of just one.
Parameters
Returns
Boolean
|
public
|
#
_lshift( Integer $shift )
Logical Left Shift
Shifts BigInteger's by $shift bits.
Parameters
|
public
|
#
_rshift( Integer $shift )
Logical Right Shift
Shifts BigInteger's by $shift bits.
Parameters
|
public
Liberty\BigInteger
|
#
_normalize( Liberty\BigInteger $result )
Normalize
Removes leading zeros and truncates (if necessary) to maintain the appropriate precision
Parameters
Returns
See
|
public
Liberty\BigInteger
|
#
_trim( Array $value )
Trim
Removes leading zeros
Parameters
Returns
|
public
Array
|
#
_array_repeat( $input, $multiplier )
Array Repeat
Parameters
- $input
- Array
- $multiplier
- mixed
Returns
Array
|
public
String
|
#
_base256_lshift( & $x, $shift )
Logical Left Shift
Shifts binary strings $shift bits, essentially multiplying by 2**$shift.
Parameters
Returns
String
|
public
String
|
#
_base256_rshift( & $x, $shift )
Logical Right Shift
Shifts binary strings $shift bits, essentially dividing by 2**$shift and returning the remainder.
Parameters
Returns
String
|
public
String
|
#
_int2bytes( Integer $x )
Converts 32-bit integers to bytes.
Converts 32-bit integers to bytes.
Parameters
Returns
String
|
public
Integer
|
#
_bytes2int( String $x )
Converts bytes to 32-bit integers
Converts bytes to 32-bit integers
Parameters
Returns
Integer
|
public
String
|
#
_encodeASN1Length( Integer $length )
DER-encode an integer
The ability to DER-encode integers is needed to create RSA public keys for use with OpenSSL
Parameters
Returns
String
See
|